3.7.77 \(\int \frac {\sqrt [3]{\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}} \, dx\) [677]

3.7.77.1 Optimal result
3.7.77.2 Mathematica [B] (warning: unable to verify)
3.7.77.3 Rubi [A] (verified)
3.7.77.4 Maple [F]
3.7.77.5 Fricas [F(-1)]
3.7.77.6 Sympy [F]
3.7.77.7 Maxima [F]
3.7.77.8 Giac [F(-1)]
3.7.77.9 Mupad [F(-1)]

3.7.77.1 Optimal result

Integrand size = 25, antiderivative size = 163 \[ \int \frac {\sqrt [3]{\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}} \, dx=\frac {3 \operatorname {AppellF1}\left (\frac {4}{3},1,\frac {1}{2},\frac {7}{3},-i \tan (c+d x),-\frac {b \tan (c+d x)}{a}\right ) \tan ^{\frac {4}{3}}(c+d x) \sqrt {1+\frac {b \tan (c+d x)}{a}}}{8 d \sqrt {a+b \tan (c+d x)}}+\frac {3 \operatorname {AppellF1}\left (\frac {4}{3},1,\frac {1}{2},\frac {7}{3},i \tan (c+d x),-\frac {b \tan (c+d x)}{a}\right ) \tan ^{\frac {4}{3}}(c+d x) \sqrt {1+\frac {b \tan (c+d x)}{a}}}{8 d \sqrt {a+b \tan (c+d x)}} \]

output
3/8*AppellF1(4/3,1,1/2,7/3,-I*tan(d*x+c),-b*tan(d*x+c)/a)*(1+b*tan(d*x+c)/ 
a)^(1/2)*tan(d*x+c)^(4/3)/d/(a+b*tan(d*x+c))^(1/2)+3/8*AppellF1(4/3,1,1/2, 
7/3,I*tan(d*x+c),-b*tan(d*x+c)/a)*(1+b*tan(d*x+c)/a)^(1/2)*tan(d*x+c)^(4/3 
)/d/(a+b*tan(d*x+c))^(1/2)
 
3.7.77.2 Mathematica [B] (warning: unable to verify)

Both result and optimal contain complex but leaf count is larger than twice the leaf count of optimal. \(6076\) vs. \(2(163)=326\).

Time = 58.56 (sec) , antiderivative size = 6076, normalized size of antiderivative = 37.28 \[ \int \frac {\sqrt [3]{\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}} \, dx=\text {Result too large to show} \]

input
Integrate[Tan[c + d*x]^(1/3)/Sqrt[a + b*Tan[c + d*x]],x]
 
output
Result too large to show
 
3.7.77.3 Rubi [A] (verified)

Time = 0.42 (sec) , antiderivative size = 161, normalized size of antiderivative = 0.99, number of steps used = 5, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.160, Rules used = {3042, 4058, 615, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt [3]{\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sqrt [3]{\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}dx\)

\(\Big \downarrow \) 4058

\(\displaystyle \frac {\int \frac {\sqrt [3]{\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)} \left (\tan ^2(c+d x)+1\right )}d\tan (c+d x)}{d}\)

\(\Big \downarrow \) 615

\(\displaystyle \frac {\int \left (\frac {i \sqrt [3]{\tan (c+d x)}}{2 (i-\tan (c+d x)) \sqrt {a+b \tan (c+d x)}}+\frac {i \sqrt [3]{\tan (c+d x)}}{2 (\tan (c+d x)+i) \sqrt {a+b \tan (c+d x)}}\right )d\tan (c+d x)}{d}\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {\frac {3 \tan ^{\frac {4}{3}}(c+d x) \sqrt {\frac {b \tan (c+d x)}{a}+1} \operatorname {AppellF1}\left (\frac {4}{3},1,\frac {1}{2},\frac {7}{3},-i \tan (c+d x),-\frac {b \tan (c+d x)}{a}\right )}{8 \sqrt {a+b \tan (c+d x)}}+\frac {3 \tan ^{\frac {4}{3}}(c+d x) \sqrt {\frac {b \tan (c+d x)}{a}+1} \operatorname {AppellF1}\left (\frac {4}{3},1,\frac {1}{2},\frac {7}{3},i \tan (c+d x),-\frac {b \tan (c+d x)}{a}\right )}{8 \sqrt {a+b \tan (c+d x)}}}{d}\)

input
Int[Tan[c + d*x]^(1/3)/Sqrt[a + b*Tan[c + d*x]],x]
 
output
((3*AppellF1[4/3, 1, 1/2, 7/3, (-I)*Tan[c + d*x], -((b*Tan[c + d*x])/a)]*T 
an[c + d*x]^(4/3)*Sqrt[1 + (b*Tan[c + d*x])/a])/(8*Sqrt[a + b*Tan[c + d*x] 
]) + (3*AppellF1[4/3, 1, 1/2, 7/3, I*Tan[c + d*x], -((b*Tan[c + d*x])/a)]* 
Tan[c + d*x]^(4/3)*Sqrt[1 + (b*Tan[c + d*x])/a])/(8*Sqrt[a + b*Tan[c + d*x 
]]))/d
 

3.7.77.3.1 Defintions of rubi rules used

rule 615
Int[((e_.)*(x_))^(m_.)*((c_) + (d_.)*(x_))^(n_)*((a_) + (b_.)*(x_)^2)^(p_), 
 x_Symbol] :> Int[ExpandIntegrand[(e*x)^m*(c + d*x)^n*(a + b*x^2)^p, x], x] 
 /; FreeQ[{a, b, c, d, e, m, n}, x] && ILtQ[p, 0]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4058
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*tan[(e_.) + 
(f_.)*(x_)])^(n_), x_Symbol] :> With[{ff = FreeFactors[Tan[e + f*x], x]}, S 
imp[ff/f   Subst[Int[(a + b*ff*x)^m*((c + d*ff*x)^n/(1 + ff^2*x^2)), x], x, 
 Tan[e + f*x]/ff], x]] /; FreeQ[{a, b, c, d, e, f, m, n}, x] && NeQ[b*c - a 
*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0]
 
3.7.77.4 Maple [F]

\[\int \frac {\tan ^{\frac {1}{3}}\left (d x +c \right )}{\sqrt {a +b \tan \left (d x +c \right )}}d x\]

input
int(tan(d*x+c)^(1/3)/(a+b*tan(d*x+c))^(1/2),x)
 
output
int(tan(d*x+c)^(1/3)/(a+b*tan(d*x+c))^(1/2),x)
 
3.7.77.5 Fricas [F(-1)]

Timed out. \[ \int \frac {\sqrt [3]{\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}} \, dx=\text {Timed out} \]

input
integrate(tan(d*x+c)^(1/3)/(a+b*tan(d*x+c))^(1/2),x, algorithm="fricas")
 
output
Timed out
 
3.7.77.6 Sympy [F]

\[ \int \frac {\sqrt [3]{\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}} \, dx=\int \frac {\sqrt [3]{\tan {\left (c + d x \right )}}}{\sqrt {a + b \tan {\left (c + d x \right )}}}\, dx \]

input
integrate(tan(d*x+c)**(1/3)/(a+b*tan(d*x+c))**(1/2),x)
 
output
Integral(tan(c + d*x)**(1/3)/sqrt(a + b*tan(c + d*x)), x)
 
3.7.77.7 Maxima [F]

\[ \int \frac {\sqrt [3]{\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}} \, dx=\int { \frac {\tan \left (d x + c\right )^{\frac {1}{3}}}{\sqrt {b \tan \left (d x + c\right ) + a}} \,d x } \]

input
integrate(tan(d*x+c)^(1/3)/(a+b*tan(d*x+c))^(1/2),x, algorithm="maxima")
 
output
integrate(tan(d*x + c)^(1/3)/sqrt(b*tan(d*x + c) + a), x)
 
3.7.77.8 Giac [F(-1)]

Timed out. \[ \int \frac {\sqrt [3]{\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}} \, dx=\text {Timed out} \]

input
integrate(tan(d*x+c)^(1/3)/(a+b*tan(d*x+c))^(1/2),x, algorithm="giac")
 
output
Timed out
 
3.7.77.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt [3]{\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}} \, dx=\int \frac {{\mathrm {tan}\left (c+d\,x\right )}^{1/3}}{\sqrt {a+b\,\mathrm {tan}\left (c+d\,x\right )}} \,d x \]

input
int(tan(c + d*x)^(1/3)/(a + b*tan(c + d*x))^(1/2),x)
 
output
int(tan(c + d*x)^(1/3)/(a + b*tan(c + d*x))^(1/2), x)